
March,2020

 Osquery

For Cyber Incident Response

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

Contents

Overview 3

Introduction 3

Instrumentation Setup 4

Elasticsearch 6

Kibana 7

Logstash 9

Osquery Installer Package Build 10

Instrumentation Test 13

Troubleshooting 18

Query processing 20

Incident Response Methodology Using Osquery and ELK Stack 22

Incident Triage................................ 29

Summary 36

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

OVERVIEW

In this case study we demonstrate the use of Osquery framework for incident response.

We use Kolide Fleet as a front-end for endpoint and query management , and the

popular ELK Stack to provide back-end storage, search capabilities and presentation of

the acquired data to the analyst. We present a detailed step-by-step guide of the

installation and configuration of all these tools, including the creation of deployment

ready Osquery daemon installation package, that is to be distributed to the endpoints.

Finally, operation of this setup is demonstrated while performing an incident response

on endpoints infected with Dridex, quickly discovering IOCs (Indicator of Compromise)

and a part of the malware persistence mechanism.

INTRODUCTION

The Osquery framework can be effectively deployed for cyber-security incident

response, essentially performing a host intrusion detection role. The ability of querying

for the presence of various artifacts within the operating system makes Osquery

powerful tool for initial triage, as well as focused detection of particular IOCs.

Osquery is an operating system framework that allows administrators and cyber

security personnel to obtain information about the operating system state of machines

in their network, as if from a SQL database. While it is possible to make queries directly

through th e console of a single machine, it is the possibility of distributed deployment

using the Osquery daemon, which provides us with endpoint visibility for monitoring

and large-scale information-gathering purposes.

We start our work preparing the IR (Incident Response) server with an installation of

the Kolide Fleet management tool. Since some of the information required for

configuring the Osquery daemons might become known only after the incident

responders arrive on-site, the necessity of deployable scalability requires us to be able

to quickly create a pre-configured, self-sufficient and distributable installation package.

We will demonstrate this process on a separate build machine, which will also have to

be brought on-site. For data collection, indexing and presentation we employ the

popular ELK stack, represented by Elasticsearch, Logstash and Kibana.

To demonstrate the usability of Osquery for incident response scenarios, we create a

few general-purpose queries for initial triage of the machines in the network. Finally, we

show the detection of IOCs of t he Dridex banking malware.

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

INSTRUMENTATION SETUP

Our base system is Debian 10 x64 virtual machine with 10 GB RAM and 40 GB hard

drive space. The clean installation of the operating system and all software components

takes less than 10 GB.

KOLIDE FLEET INS TALLATION

The open source Kolide Fleet software for endpoint management and for running

queries is our preferred tool . It allows us to store prepared queries, that can be further

organized into query packs, simplifying the hunt for groups of IOCs. The prer equisites

for Kolide Fleet are MariaDB and Redis for the backend storage databases:

> apt install mariadb - server - y
> mysql_secure_installation # choose most secure options

> apt install redis - server - y

Then, we need to generate an SSL certificate, which will be used by the endpoints to

connect to the fleet manager.

Note, that it is possible to use the serverôs IP for a certificate common name and it is

for this reason, that the certificate needs to be generated each time we deploy a local

server to a new incident.

> openssl genrsa - out osqkey.pem 4096
> openssl req - new - x509 - key osqkey.pem - out osqcert.pem - days 365 - subj
/CN=<server_ip>

The fleet configuration file must be created to point the fleet manager to the back -end

resources and the generated SSL certificates. The jwt_key field will be populated in the

next step.

> mousepad fleet.config
mysql:
 address: 127.0.0.1:3306
 database: osqir
 username: <user_name>
 password: <db_password>
redis:
 address: 127.0.0.1:6379
loggin g:
 json: true
auth:
 jwt_key:
server:
 cert: /home/<user_name>/osqcert.pem

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

 key: /home/<user_name>/osqkey.pem
 address: 0.0.0.0:443

We finalize Kolide Fleet setup by running the commands below.

Note, that the second command will throw an error, with some additional info ï copy

the jwt_key value and paste it into the fleet.config file. Afterwards, test if everything

went well by re -running the fleet serve command and visiting the fleet page at

hxxps://localhost .

> fleet prepare db -- config fleet.config
> fleet serve -- config fleet.config
throws error - > copy the shown key to fleet.config - > auth: jwt_key
rerun serve command and test using browser https://<server_ip>

We can also run the fleet manager as a service.

> mousepad /etc/systemd/system/fleet.service
[Unit]
Description=kolide_fleet
After=network.target

[Service]
ExecStart=/usr/bin/fleet serve - c /home/<user_name>/fleet.config

[Install]
WantedBy=multi - user.target

> systemctl ena ble fleet.service
> systemctl start fleet.service

Finally, we need to disable SLL certificate verification in the fleet manager settings

because we have a self-signed certificate.

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

ELK STACK INSTALLATION

ELK Stack or Elastic Stack is a highly customizable software suite with rich and powerful

data collection, processing, searching and presentation functionality. It offers great

flexibility in terms of available configuration options, allowing a wide variety of use -

cases. It is important to match all used software component versions for compatibility

reasons. At the time of this writing the latest version of ELK Stack is version 7.6.0 is the

latest.

Note, that the free versions of these programs do not offer authentication settings, so

consider setting the system firewall to block packets from non -local addresses to ports

they are listening on ï by default 9200 for Elasticsearch, 5601 for Kibana and 9600 for

Logstash.

ELASTICSEARCH

The data store back-end is provided by the Elasticsearch, which is also the first

component we will install. Java is a single prerequisite, but Debian 10 already ships with

Java 11 installed.

> wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch - 7.6.0 -
amd64.deb
> dpkg - i elastic search - 7.6.0 - amd64.deb

Letôs launch the Elasticsearch service and verify the successful installation using

systemctl status.

> systemctl daemon - reload
> systemctl enable elasticsearch.service
> systemctl start elasticsearch.service

We must tell Elasticsearch which network address to listen on. Since we are deploying
both the fleet manager and the ELK stack to a single machine, we use the _local_
value. Restart the service and we can move on to the next step.

> mousepad /etc/elasticsearch/elasticsearch.yml
in the Network section uncomment and set
network.host: _local_
> systemctl restart elasticsearch.service

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

KIBANA

The K in ELK stack stands for Kibana - the user interface component responsible for

data visualization, whether it is graphical or tabular. It also offers multiple interfaces for

management of the particular ELK Stack deployment. We have chosen the .deb

package as a means of installation:

> wget https://artifacts.elastic.co/downloads/kibana/kibana - 7.6.0 - amd64.deb
> dpkg - i kibana - 7.6.0 - amd64.deb

The Kibana service is then run and we can check if it started successfully with systemctl

status.

> systemctl da emon- reload
> systemctl enable kibana.service
> systemctl start kibana.service

We are running all components of the ELK Stack on the same machine, so we set the

configuration appropriately and restart the service.

> mousepad /etc/kibana/ kibana.yml
uncomment and set
server.host = "localhost"

> systemctl restart kibana.service

We can visit the Kibana site at localhost:5601. For our use-case, we should enable the

monitoring feature in the Stack Monitoring menu.

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

LOGSTASH

The last component of our setup is Logstash, an immensely versatile software for

collection of data from various sources. It also features scriptable data pre -processing

and enrichment using its simple pipelined input ï filter ï output workflow. Results fr om

scheduled Osquery query packs are located in /tmp/osquery_result . Since we are

deploying both the fleet manager and the ELK Stack on the same machine, we can

import the data from the local filesystem directly into Logstash using the file input

module.

Note, that if we had separate machines for fleet management and the ELK Stack, we

would have to install Filebeat on the fleet management machine in order to forward the

data to Logstash on the ELK machine. Logstash installation is identical to other

components:

> wget https://artifacts.elastic.co/downloads/logstash/logstash - 7.6.0.deb
> dpkg - i logstash - 7.6.0 - amd64.deb

Run the service and optionally check its status to see if everything works.

> systemctl daemon - reload
> systemctl enable logstash.service
> sy stemctl start logstash.service

Next, we install the file input module and Elasticsearch output module:

> /usr/share/logstash/bin/logstash - plugin install logstash - input - file
> /usr/share/logstash/bin/logstash - plugin install logstash - output - elasticsearch

Logstash is configured through the /etc/logstash/logstash.yml file. The path.config field

points to a directory, where we will create and store Logstash pipeline configurations

and thanks to config.reload.automatic set to true, all changes to the pipeline

configurations will be reloaded automatically. Restart the service.

> mousepad /etc/logstash/logstash.yml
uncomment and set
path.config: /etc/logstash/conf.d
config.reload.automatic: true

> systemctl restart logstash.service

Now, we configure a basic Logstash pipeline. We start by creating a .conf file in the

/etc/logstash/conf.d folder. We point the file input section to the file with the query

results and direct the output to the Elasticsearch instance. We will configure the filter

section later.

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

> mousepad /etc/logstash/conf.d/<logstash_pipe_filename>.conf
input {
 file {
 path => "/tmp/osquery_result"
 }
}

filter {
}

output {
 # stdout { codec => rubydebug }
 elasticsearch {
 hosts => ["localhost:9200"]
 }
}

The commented-out line in the output section can help in debugging the filter

configuration by routing the output to console, we will address this a bit later because

we have no Osquery endpoints and no queries scheduled yet.

OSQUERY INSTALLER PACKAGE BUILD

In order to simplify the deployment of Osquery to endpoints at a larger scale, it is

advantageous to create an install-and-forget installer package with custom prepared

configuration files for the Osquery daemons being deployed. We want the daemons to

automatically enroll in the fleet without any further interaction other than pushing the

installation package to endpoints via software management or in the worst case,

double-clicking the installer. We perform the build on a Windows 10 x64 machine, and

we start by an entirely optional step of installing Chocolatey package manager, which

makes the installation of other tools easier. We need an administrator PowerShell and

we also have to restart PowerShell whenever there are changes to environment

variables.

> Set - ExecutionPolicy Bypass - Scope Process - Force; iex((New - Object
System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))

Restart PowerShell and install Git and WiX Toolset:

> choco install git - y
> choco install wixtoolset - y

Close PowerShell and add the WiX Toolset bin path to the PATH variable manually, the

default location is C:\Program Files (x86)\WiX Toolset v3.11\bin. Letôs continue in

PowerShell:

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

> git clone https://github.com/facebook/osquery.git
> cd . \ osquery \
> git checkout tags/<latest_version_number>

The latest version number of Osquery can be found on its Github repository under the

Releases tab. Further, need to download and install the pre-built Windows package

from https://osquery.io/downloads . This allows us to build the .msi installer only,

without having to compile the Osquery binaries first. Now we can create our build folder

and necessary configuration for the Osquery daemon. The first file will contain the

enrollment secret string, which the endpoint daemons will use for registering with our

Kolide Fleet server.

> mkdir build \ msi
> cd . \ build \ msi\

> notepad.exe <enrollment_secret_filename>
Copy the enrolment secret string from Kolide Fleet setting page

Next is a configuration file containing flags for the Osquery daemon. Replace the

bracketed strings with appropriate values for your case. The SSL certificate we have

generated previously must be copied over from the fleet server.

> notepad.exe <flags_filename>
 -- tls_hostname=<fleet_hostname_or_ip>
 -- tls_server_certs=C: \ Program Files \ osquer y\ <server_ssl_cert_filename>
 -- host_identifier=hostname
 -- enroll_tls_endpoint=/api/v1/osquery/enroll
 -- config_plugin=tls
 -- config_tls_endpoint=/api/v1/osquery/config
 -- config_tls_refresh=10
 -- disable_distributed=false
 -- distributed_plugin=tls
 -- distributed_interval=10
 -- distributed_tls_max_attempts=3
 -- distributed_tls_read_endpoint=/api/v1/osquery/distributed/read
 -- distributed_tls_write_endpoint=/api/v1/osquery/distributed/write
 -- logger_plugin=tls
 -- logger_tls_endpoint=/api/v1/osquery/log
 -- logger_tls_period=10
 -- enroll_secret_path=C: \ Program Files \ osquery \ <enrollment_secret_filename>

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

We can now run the make_windows_package.ps1 PowerShell script provided in the Git

package to create a .wxs configuration file for WiX tools. The script may or may not

create a .msi file. While running the script, we found that the file did not work properly,

due to an error in the generated .wxs file, this can be fixed manually. To resolve this

issue, look around line number 128 and correct the line responsible for including the

default certs.pem file to following:

<File Id='cert_0' Name='certs.pem'
Source='<root_folder> \ osquery \ tools \ deployment \ .. \ .. \ tools \ deployment \ certs.pem'/>

Finish with generating a .wixobj file a nd building the final .msi package:

> candle.exe . \ osquery.wxs
> light.exe - ext WiXUtilExtension . \ osquery.wixobj - o . \ osquery.msi

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

INSTRUMENTATION TEST

To test our configuration, we will deploy the built package to a Windows 10 x64 test

endpoint on the same network as the server. For this purpose, we created an internal

network in Virtualbox to keep the network isolated because of later tests with actual

malware. Once we run our Osquery .msi package on the endpoint, we should see the

endpoint appear in Kolide Fleet dashboard on our server:

Letôs create a test query, which will return information about the daemon itself:

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

Fill in the title, then query itself in SQL syntax, add some description and assign the

hosts on which the query should be run.

Note the help panel on the right, which will come in handy when dealing with more

complex queries.

We save the query and run it, to see if everything is working. We should see the output

in a few seconds:

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

These queries provide output in the web interface only, an d although we will be using

them for tailored querying and for query testing, we need to schedule a query pack to

automatically run a set of queries at scheduled intervals:

Set the title, target hosts and save the pack:

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

Select the prepared Osquery info query from the dropdown list:

In the boxes that appear we fill the query interval, target platform, Osquery da emon

version, type of data to capture and shard. The shard is the percentage of hosts that

will be queried. Snapshot logging will always capture the entire state of the queried

information as opposed to differential logging, which only captures changes in respect

to a previous state. After saving the settings the query will appear in the list in the

center of the screen. We can also check that the query pack is enabled to run in the

query pack menu.

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

Query packs are an effective way to keep the queries organized, for example we could

create a query pack for a particular type of malware and enable it when we want to

check for the presence of its IOCs, to which the queries from that pack will be tailored.

The response data will be written into the /tmp/osquer y_result file mentioned before. At

this point, we have the Osquery part of our instrumentation working and now it is time

to bring the ELK stack into play. Letôs move to the Discover tab on the Kibana portal,

where we will be prompted to create a new index pattern. We should already see our

Logstash index in the table so we can enter logstash* into the Index pattern textbox:

On the next page, select ñ@timestampò from the Filter field dropdown list and click

Create index pattern:

mailto:info@lifars.com

 244 Fifth Avenue, Suite 2035, New York, NY 10001

LIFARS .com (212) 222-7061 info@lifars.com

When we move to the Discover tab, we should see incoming data according to the

scheduled query pack:

TROUBLESHOOTING

If you see a screen like the one above, awesome! In case you do not, we can

troubleshoot the building blocks of our setup from the beginning:

Is the endpoint correctly enrolled in the fleet manager? It must be visible in the Kolide

Fleet > Hosts screen. If not, check the configuration file containing the flags for the

Osquery daemon. If the problem persists, stop the Osquery service and run the daemon

directly from PowerShell to see what error is reported.

Do we get a response when a single query is ran from the Kolide Fleet interface?

Is the query pack configuration correct? Check if the host number for that query pack is

not zero.

Does the /tmp/osquery_resul t file contain data? If yes, the problem is somewhere in

the ELK Stack configuration.

Is the Logstash service and the Logstash pipeline configured correctly? Stop the

Logstash service and run the command below to see Logstash messages. Also,

mailto:info@lifars.com

